HIGGS

Project ID	875091			
PRR 2024	Pillar 2 - H ₂ storage and distribution			
Call topic	FCH-02-5-2019: Systematic validation of the ability to inject hydrogen at various admixture level into high-pressure gas networks in operational conditions			
Project total cost	EUR 2 107 672.50			
Clean H ₂ JU max. contribution	EUR 2 107 672.50			
Project period	1.1.2020-31.12.2023			
Coordinator	Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón, Spain			
Beneficiaries	Deutscher Verein des Gas- und Wasserfaches – Technisch- Wissenschaftlicher Verein EV, European Research Institute for Gas and Energy Innovation, Fundacion Tecnalia Research and Innovation, OST – Ostschweizer Fachhochschule, Redexis SA			

www.higgsproject.eu/

PROJECT AND GENERAL OBJECTIVES

HIGGS aimed to fill in the gaps in knowledge of the impact that high levels of hydrogen could have on high-pressure natural gas infrastructure, its components and its management. To reach this goal, the project has developed a mapping of technical, legal and regulatory barriers and enablers; tested materials/components; completed techno-economic modelling; and finally concluded preparing a set of conclusions as a pathway towards enabling the injection of hydrogen into high-pressure gas grids.

NON-QUANTITATIVE OBJECTIVES

- Compile recommendations for regulations, codes and standards according to current and future regulation/standardisation.
- Forge a pathway for the stepwise integration of hydrogen into the EU gas network, to improve the potential of hydrogen injection by 2030 and 2050.
- Create a techno-economic model and study of the roles of technologies for integrating H₂/CH₄ and sector coupling at the EU level.

PROGRESS AND MAIN ACHIEVEMENTS

- The testing platform has enabled dynamic and static tests to be carried out with blends of 20 mol % H₂, 30 mol % H₂ and 100 % H₂.
- The project has adopted the techno-economic model, and several scenarios have been modelled.

- A system has been created for separating low concentrations of hydrogen in natural gas. The experimental campaign with the gas separation prototype was successful.
- The gas tightness of valves of different natures and joints has been proved for hydrogen blends and 100 % hydrogen. The equipment of the gas grid behaved the same way as when natural gas was transported.
- The tested carbon steels showed no signs of embrittlement due to hydrogen exposure.
- A complete set of findings has been provided to predict what will be expected from gas grids until 2050.

FUTURE STEPS AND PLANS

The project has finished.

PROJECT TARGETS

Target source	Parameter	Unit	Target	Target achieved?
Project's own objectives	Blending percentage of $\rm H_2$ compatible with existing gas transmission networks	%	100	
	Readiness of gas transmission networks for H ₂ distribution	%	Complete inventory	\checkmark
	Techno-economic approach to grid repurposing	%	Model scenarios	

