NEPTUNE

NEXTGENERATION PEMELECTROLYSER UNDER NEW EXTREMES

Dreiset ID:	770540				
Project ID:	779540				
PRD 2023:	Panel 1 – H2 production				
Call topic:	FCH-02-1-2017: Game changer water electrolysers				
Project total costs:	EUR 1 927 335.43				
Clean H ₂ JU max. contribution:	EUR 1 926 221.25				
Project period:	2.1.2018-30.4.2022				
Coordinator:	ITM Power (Trading) Limited, United Kingdom				
Beneficiaries:	Consiglio Nazionale delle Ricerche,				

Engie, IRD Fuel Cells A/S, Pretexo, Solvay Specialty Polymers Italy SpA https://cordis.europa.eu/project/

OUANTITATIVE TARGETS AND STATUS

id/779540

PROJECT AND OBJECTIVES

NEPTUNE addresses challenges associated with reducing capital costs and increasing production rates and output pressures of water electrolysis, which will be required to achieve large-scale application of polymer electrolyte membrane electrolysers. The project is developing a set of breakthrough solutions at the material, stack and system levels to increase hydrogen pressure to 100 bar and current density to 4 A/cm² for the base load, while keeping nominal energy consumption at < 50 kWh/kg of H_a. The novel solutions will be validated by demonstrating a robust and rapid-response electrolyser.

NON-OUANTITATIVE OBJECTIVES

The objective was to extend the protocols for testing electrolysis systems under the new operating conditions (high temperature and pressure).

PROGRESS AND MAIN ACHIEVEMENTS

- Under the project, a new simplified balance of plant for polymer electrolyte membrane electrolysis was designed and built to extend operating conditions.
- The membrane electrode assembly degradation rate achieved at 80 °C was 4.4 µV/h/ cell at 4 A/cm² in a test lasting more than 2 000 hours (single-cell level).
- At 90 °C, cell voltages of 1.74 V at 4 A/cm² and 1.98 V at 8 A/cm² were achieved, with noble metal loading of 0.34 mg/cm² (anode) and 0.1 mg/cm² (cathode).

FUTURE STEPS AND PLANS

The project has been completed.

Target source	Parameter	Unit	Target	Achieved to date by the project	Target achieved?	SoA result achieved to date (by others)	Year of SoA target
	Anode catalyst loading per W	mg/W	0.05	0.0459	\checkmark	0.23	
Project's own objectives	Cathode catalyst loading per W	mg/W	0.0071	0.0135	يې مې	0.035	2018
	Efficiency degradation per 1 000 hours for LT electrolyser	%/1 000 h	0.29	0.23	\checkmark	0.2	

PRD 2023 PANEL H2 Production