
PRR 2024 PILLAR 
H2 Production

Project ID 101137701

PRR 2024 Pillar 1 – Renewable hydrogen 
production

Call topic HORIZON-JTI-
CLEANH2-2023-01-01: Innovative 
electrolysis cells for hydrogen 
production

Project 
total costs EUR 2 989 495.00

Clean H2 JU max. 
contribution EUR 2 989 495.00

Project period 1.1.2024–30.6.2027

Coordinator Acondicionamiento Tarrasense 
Associacion, Spain

Beneficiaries Danmarks Tekniske Universitet, 
Industrie De Nora SpA, Particular 
Materials SRL, Snam SpA

https://cordis.europa.eu/project/
id/101137701

X-SEED
EXPERIMENTAL SUPERCRITICAL 
ELECTROLYSER DEVELOPMENT

PROJECT AND GENERAL OBJECTIVES
X-SEED aims to develop an innovative electro-
lyser that does not use an alkaline membrane 
and that works in supercritical water condi-
tions (SPWCs) (> 374 °C, > 220 bar), generating 
high-quality H2 at pressure over 200 bar. Novel 
catalysts and electrodes are designed, synthe-
sised and characterised to ensure high levels of 
efficiency. Multiscale modelling and cell design 
ensure laminar fluid flows, allowing H2 and O2 
separation without a membrane. X-SEED vali-
dates results at the laboratory scale (technology 
readiness level 4) for a single cell and a five-cell 
stack, achieving high energy efficiency (42 kWh/
kg H2), current density (> 3 A/cm2) and robust-
ness (degradation rate < 1 %/1 000 h). X-SEED 
also integrates circularity and sustainability 
assessments in decision-making, limiting the 
use of critical raw materials (CRMs) (use of 
less than 0.3 mg/W) and using waste water 
both for catalyst production and as a possible 
electrolyte for the supercritical electrolyser. 
In conclusion, the X-SEED project’s relevance 
and added value extend beyond the techno-
logical dimension: X-SEED will accelerate the 
H2 ecosystem, supporting Europe in meeting 
climate targets and maintaining its leadership 
position as a technological developer, producer 
and exporter of green energy.

NON-QUANTITATIVE OBJECTIVES
• Maximise the efficiency, sustainability and 

stability of the innovative nanostructured 
catalysts and electrodes for anodes and 
cathodes based on Earth-abundant mate-
rials.

• Improve the efficiency, cost and durability of 
the electrolyser by developing an innovative 
cell and short stack that do not use an elec-
trolysis membrane, based on use in SPWCs.

• Gather evidence of the sustainability and 
circularity benefits of the SPWC electrolyser 
over current solutions (proton-exchange 
membrane electrolysis (PEMEL), alkaline 
water electrolysis (AWEL)) by assessing the 

economic (life-cycle costing), environmental 
(life-cycle assessment) and social (social 
life-cycle assessment) impacts.

• Demonstrate the improvement of the sus-
tainability and cost competitiveness of 
the SPWC electrolyser in comparison with 
PEMEL and AWEL technology.

PROGRESS AND MAIN ACHIEVEMENTS
• The SPWC electrolyser framework was 

defined. It covers state-of-the-art (SOA) 
catalysts and electrodes, a survey of indus-
trial waste water to be used as a source of 
catalysts and electrolytes and a survey of 
industrial thermal waste appropriated for the 
operation of the SPWC electrolyser (no Inno-
vation Radar / no Horizon Results Platform).

• The SPWC cell and stack design was mod-
elled using 2D and multiphysics simulation.

• The first batch of nanostructured catalysts 
stable at SPWCs was synthesised. Catalysts 
are based on perovskites, metal oxides and 
transition-metal-decorated nanoparticle 
structures.

FUTURE STEPS AND PLANS
• Selection of waste water suitable for cata-

lyst synthesis via hydrothermal supercritical 
processes (continuous hydrothermal flow 
synthesis).

• Selection of electrolyte to use in the SPWC 
electrolyser.

• Selection of waste thermal energy from 
industries that is suitable to operate the 
SPWC.

• Electrochemical and physico-chemical char-
acterisation of the catalyst and synthesis of 
improved ones.

• Electrode design and development based 
on high-stability materials and synthesised 
catalysts.

• Start of the design and preparation of the 
test bench to operate and evaluate the SPWC 
electrolysis cell.
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PROJECT TARGETS

Target source Parameter Unit Target
Target 

achieved?
SOA result achieved to date (by 

others)

Year for 
reported SOA 

result

Project’s own 
objectives

Feedback received from experts number > 15 N/A —

Separation of products (O2 and H2)
% of H2 at O2 gas 

stream < 4 Not reported for SPWC electrolyser —

High operational flexibility: load 
range

% (start-up and 
cold down time, 

seconds)

5–110 %, with 
fast start-up 

and cold down 
(< 600 seconds)

Load range is 5–120 % for PEMEL, 15–110 % 
for AWEL or 30–125 % for SOEL; the start-up 

and cold down time ranges from < 60 seconds 
for PEMEL to > 10 hours for SOEL

2020

Synthesis and study types of catalyst 3 N/A —
Assessments number 3 N/A —
Electricity consumption @ nominal 
capacity kWh/kg of H2 42 47–66 for PEMEL and AWEL and 35–50 for 

SOEL at the stack level 2020

Nominal power of a short-stack 
supercritical electrolyser integrated 
into five cells of 25 cm2

kW 0.5 For the SPWC electrolyser, only a single cell has 
been tested —

Degradation rate < 1 %/1 000 h, 
demonstrated by ageing stress tests 
at the SPWC cell and stack levels

%/1 000 h < 1 Not reported for the SPWC electrolyser —

Heat recovered % 50 N/A —
Production capacity synthesis of 
catalysts using upscalable processes kg/h 1 1 t per day is possible for different 

manufacturing techniques and types of catalyst
2018, 2016, 2017, 

2011
External interactions through social 
media, workshops and disclosure 
articles

number 5 000 N/A N/A

Cell and stack electrolyser work at 
current density

A/cm2 at 1.8 V in 
SPWCs 3 35 A/cm2; 3 A/cm2 at 2.5 V 2023; 2022

Performance loss in the 
electrochemical, thermal, and 
chemical ageing tests)

%/1 000 h < 0.8 Not reported for SPWC electrolyser —

Reduction of electricity consumption 
in comparison with AWEL and 
PEMEL

% kg CO2 20
Carbon footprint varies from 25 kg CO2/kg H2 
(for AWEL and SOEL) to 20 kg CO2/kg H2 for 

SOEC, based on grid electricity consumption in 
Germany in 2018 (0.47 t CO2/MWh)

2020

Production of H2 at > 200 bar bar > 200 30 bar at the cell level (PEMEL, AWEL); tests in 
SPWCs at 300 bar have been carried out 2020; 2022; 2022

Interactions with end users number 5 N/A N/A
Catalyst and electrodes with high 
electrolytic efficiency mV η10 at NTP < 100 for HER; 

< 150 for OER; 90 mV at η10 for HER and 150 mV η10 for OER 2021

Potential cost of production €/kg 3

Without optimisation, the production cost of 
supercritical electrolysis is USD 7.5/kg H2; with 
CAPEX, cost of electricity, etc. optimised, high-
pressure high-temperature water electrolysis is 

expected to produce H2 at USD 3.10/kg

2021

Scientific contributions number 22 N/A —
Metals (Ni, Co, Cu, etc.) for the 
catalyst come from waste water % 50 N/A —

Patents and exploitation of the 
materials and systems developed in 
related industrial sectors

number 2 N/A N/A

Non-use of Pt and Ru, decreased use 
of CRMs mg/W < 0.3 0 2021

Catalysts with high surface areas m2/g 10 > 100 m2/g 2020


