SUSTAINCELL

DURABLE AND SUSTAINABLE COMPONENT SUPPLY CHAIN FOR HIGH PERFORMANCE FUEL CELLS AND ELECTROLYSERS

Drainat ID	101101470		
Project ID	101101479		
PRR 2024	Pillar 8 – Strategic research challenge		
Call topic	HORIZON-JTI- CLEANH2-2022-07-01: Addressing the sustainability and criticality of electrolyser and fuel cell materials		
Project total cost	EUR 9 993 652.00		
Clean H ₂ JU max. contribution	EUR 9 993 652.00		
Project period	1.1.2023-31.12.2028		
Coordinator	SINTEF AS, Norway		
Beneficiaries	Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Danmarks Tekniske Universitet, Deutsches Zentrum für Luft- und Raumfahrt EV, École polytechnique fédérale de Lausanne, Forschungszentrum Jülich GmbH, Fundacion Tecnalia Research and Innovation, Haute école spécialissée de Suisse occidentale, Teknologian tutkimuskeskus VTT Oy, Université de Montpellier		

https://sustaincell.eu/

PROJECT AND GENERAL OBJECTIVES

The Sustaincell project aims to support European industry in developing next-generation electrolyser and fuel cell technologies by developing a sustainable European supply chain of materials, components and cells. This will be based on scientific breakthrough innovations, ecodesign guidelines and environmentally friendly manufacturing routes. The project will focus on developing new critical-raw-material (CRM)-lean and/or CRM-free materials and architectures, aiming to maximise functionalities and durability while decreasing CRM content per unit cell. The new flexible and scalable processing routes will exhibit higher productivity, reduced utilities consumption and reduced greenhouse gas emissions. The project will also develop enhanced recovery and treatment processes for optimising recovery and reuse of platinum group metals / CRMs and ionomers extracted from end-oflife stacks and production processes.

The project is led by SINTEF and will involve world-leading experts in the value chain of alkaline, proton-exchange membrane, anion-exchange membrane, solid oxide ion conducting and proton ceramic conducting electrolysers and fuel cells. The open innovation research will be actively communicated to European academia and industry to exploit the results of Sustaincell for the benefit of society.

NON-QUANTITATIVE OBJECTIVES

- Harvesting and expanding European knowledge and know-how on CRM identification, substitution, recovery and recycling strategies and value chains.
- Ensuring the replacement and/or reduction of CRMs per unit cell using eco-friendly processing methods.
- Increasing the yield of ionomers and CRMs recovered from used cells and membrane elec-

SUSTAINCELL

trode assemblies, and from scrap and waste, by recycling.

- Contributing to the development of harmonised EU protocols.
- Validating new solutions in terms of gain in performance and durability at the single-cell level.
- Demonstrating the sustainability of at least three innovative solutions for each technology.
- Maximising the impact, uptake and acceptance of Sustaincell results by developing strategies for dissemination to, communication with and exploitation by academia, industries, policymakers, non-governmental organisations and the public.
- Establishing a suitable toolbox for efficient risk management and knowledge sharing between partners.

PROGRESS AND MAIN ACHIEVEMENTS

- Autumn school was co-organised by Sustaincell with four other EU projects (eCOCO2, Winner, Protostack, Single).
- School provided tutorial lectures on design, fabrication, characterisation, testing, and modelling of materials, components, cells, and stacks.
- Two milestones have been partially achieved, with performance targets achieved for several materials, durability needing validation.

FUTURE STEPS AND PLANS

- Prepare a workshop on life-cycle assessment in 2024;
- Continue the development and validation of CRMfree/lean electrocatalysts/ionomers/electrodes for both low- and high-temperature technologies;
- Carry out the round robin test;
- Increase interaction with external stakeholders and dissemination activities.

PROJECT TARGETS

PRR 2024 PILLAR

Srategic Research Challenge

Target source	Parameter	Unit	Target	Target achieved?
SRIA (2021–2027) (CAPEX	€/kW	@ 100 MW: AEL 400, AEMEL 300, PEMEL 500, SOEL 520 @ 500 kWe, PEMFC 900	- - - -
	Min. CRMs/PGMs (other than Pt) recycled from scraps and wastes	%	50	
	lonomers recycled from scrap and waste	wt%	80	
	Pt recycled from scrap and waste	wt%	99	
	Current density at the cell level for AEL, AEMEL, PEMEL, SOEL	A/cm ² @ x V	2030: AEL 1 @ 1.8, AEMEL 1.5 @ 2, PEMEL 3 @ 1.8, SOEL 1.5 @ 1.2	
	CRMs as catalysts in AEL, AEMEL, PEMEL, PEMFC	mg/W	AEL 0.0, AEMEL 0.0, PEMEL 0.25, PEMFC (transport) < 0.25 mg/kW, PEMFC (stationary) 0.01 mg/Wel non-recoverable CRMs	
Project's own	PEMFC electrical efficiency, non-recoverable CRM loading,	%	\sim 56 % (% lower heating value $\rm H_2$), 0.01 mg/Wel, 0.2 %/1 000 h	_

© European Union, 2024

Reproduction is authorised provided the source is acknowledged. For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly from the respective rightholders. PDF ISBN 978-92-9246-431-8 doi:10.2843/715166 EG-05-24-218-EN-N

