FURTHER-FC

FURTHER UNDERSTANDING RELATED TO TRANSPORT LIMITATIONS AT HIGH CURRENT DENSITY TOWARDS FUTURE ELECTRODES FOR FUEL CELLS

Project ID	875025				
PRR 2024	Pillar 3 – H ₂ end uses: transport				
Call topic	FCH-01-4-2019: Towards a better understanding of charge, mass and heat transports in new generation PEMFC MEA for automotive applications				
Project total costs	EUR 2 735 031.25				
FCH JU max. contribution	EUR 2 199 567.35				
Project start - end	1.1.2020-31.8.2024				
Coordinator	Commissariat à l'Énergie Atomique et aux Énergies Alternatives, France				
Beneficiaries	Centre national de la recherche scientifique; Chemours France SAS; Deutsches Zentrum für Luft- und Raumfahrt EV; École nationale supérieure de chimie de Montpellier; Hochschule Esslingen; Imperial College of Science, Technology and Medicine; Institut national polytechnique de Toulouse; Paul Scherrer Institut; The Chemours Company FC, LLC; Toyota Motor Europe NV; Université de Montpellier; University of Calgary				

PROJECT AND GENERAL OBJECTIVES

Further-FC proposes platforms coupling experimental study and modelling to better understand the performance limitations of the cathode catalyst layers (CCLs) of low-Pt-loaded proton-exchange membrane fuel cells. Based on this, CCL improvements will be discussed and tested. Up-to-date references and some customised membrane electrode assemblies (with different ionomer-to-carbon ratios, thicknesses, etc.) have been produced, models of the CCLs are progressing based on their structural characterisation and the first effective properties have been derived.

NON-QUANTITATIVE OBJECTIVES

- Better understand the performance limitations of proton-exchange membrane fuel cells.
- Set up numerical and modelling tools to do so, focusing on the cathode catalyst layer.

PROGRESS AND MAIN ACHIEVEMENTS

 Progress has been made in the characterisation of the CCLs (through atomic force microscopy, Raman spectroscopy, 3D focused ion beam scanning electron microscopy, etc.).

- Progress has been made in the modelling of CCLs at different scales.
- The definition and validation of test protocols enables reliable comparison between the partners.
- Various customised membrane electrode assemblies have been manufactured, tested and characterised (through cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, life cycle assessment, etc.).

FUTURE STEPS AND PLANS

- The finalisation of the characterisations of reference and customised membrane electrode assemblies is ongoing.
- The finalisation of the modelling of the CCLs at different scales is ongoing.
- The determination of the most performance-limiting mechanisms is ongoing.
- · The upscaling of the models has started.
- The combined analysis of experiments and modelling to explain the role of different ionomers and/or catalyst supports on performance is ongoing.

https://further-fc.eu/

PROJECT TARGETS

Target source	Parameter	Unit	Target	Target achieved?	SOA result achieved to date (by others)	Year for reported- SOA result
MAWP (2014-2020)	Volumetric power density	kW/I	9.3	- - - - - - - - - - - - - - - - - - -	4.1	– 2017 (Auto-Stack CORE project)
	Weight power density	kW/kg	4		3.4	
	Surface power density	W/cm ²	1.8		1.13	
	Cost	€/kW	20		36.8	
	Durability	hours	6 000		3 500	
		mg/cm²	0.144		0.4	
	Total Pt load	g/kW	0.08		0.35	
	Pt efficiency	A/mg	15		4.5	

